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Fig.3 Measured and transformed Doppler shifts.

the axial velocity of the plasma jet were measured at Secs.
IV and V (Fig. 2) in a manner similar to the one mentioned
previously. The two interferograms, however, were taken
upstream and downstream, respectively, at an angle of 60°
against the axis of the plasma jet, thus experimentally elimi-
nating the rotational parts of the line shifts as a first-order
approximation. Profiles of relative intensities which were
additionally required, as will be shown below, were measured
at each section in question by removing the interferometer
from the light path. Since spectral lines of neutral argon have
not been observed, the Doppler shifts were obtained from
lines of singly ionized argon, especially from the line at 4348 A.
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Fig. 4 Axial velocity profiles at Secs. IV and V.

Transformation

The transformation of the measured gross Doppler shift
profiles to local quantities has been accomplished by using the
intensity profiles and profiles of emission coefficients com-
puted from these via an Abel transform as weights in a modi-
fied Abel transform for rotational and elliptical cases. Figure
3 shows profiles of integrated Doppler shifts, emission coef-
ficients, and transformed local Doppler shifts; the utility of
the transform is evident, especially if the profiles of the emis-
sion coefficient flatten in the region near the axis. If the
geometry of the jet deviates considerably from cylinder sym-
metry, the aceuracy of the results of the transform decreases
with increasing radius.
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Fig. 5 Rotational velocity profiles at Secs. 1, II, and 111.
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Fig. 6 Angular frequency of the jet vs radius at Secs. I
I1, and II1.
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Results

Figures 46 show the profiles of axial and rotational
velocity and the angular frequency, Fig. 6 illustrating the non-
rigid-body rotation of the jet. A detailed description of ex-
perimental methods and transformation formulas may be
found in previously published papers.t:?
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A Numerical Solution of the Conduction
Problem with Radiating Surface
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Nomenclature

surface heat flux
specific heat

density

time

distance

thermal conductivity
thermal diffusivity
temperature
emissivity
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o = Stefan-Boltzman constant 1,900
h. = heat transfer coefficient
I.S. = insulated surface
U.S. = uninsulated surface

1,500 )
Subscripts &
z = space locations . g
m = convective medium Fig. 1 Tempera- £ /
n = time sequence ture history of insu- 5 /
w = wall lated surface. g
eq = equilibrium 2

1, 600 //

B X IMPLICIT RUNGE-KUTTA
Superscript ‘ @EXPLICIT RUNGE-KUTTA
k = Runge Kutta step [ORADIATION APPROXIMATION
[
Introduction 1% 9 100

RADITIONALLY, the problem of transient heat conduc-

tion with a radiating surface has been solved in one of two
ways: 1) an explicit Runge-Kutta integration, 2) a fully
implicit difference method. The fully implicit method is un-
conditionally stable. However, radiation and convection are
assumed to originate from the surface node, and an approxima-
tion to the radiation term is necessary to linearize the resulting
difference equation.! The error due to this approximation
can be kept to within 109, for temperatures greater than
5000°F.

A very aceurate solution is possible with the explicit Runge-
Kutta technique combined with an actual wall temperature
computation, but the stability eriterion associated with the
explicit form of the difference equation may make this tech-
nique prohibitively expensive for fine meshes.?

Discussion

In the proposed method an implicit difference, which is un-
conditionally stable, is used between all interior points, and
an explicit difference is used between the wall and adjacent
node. In order to achieve reasonable accuracy in cases with
a rapidly changing surface heat flux, a Runge-Kutta-type
integration is imposed on the surface. A description follows.

The surface heat flux is computed by using Eqgs. (1) and (2)
with conditions at time ¢, in Runge-Kutta step 1, at time
tnt1y2 in steps 2 and 3, and at time £,4, in step 4;

—eoTut + h(Tw — T) + [K/(AW/2DNT1 — T) = 0 (1)
Q = —eoTo + ho(Tw — T @

Interior temperatures are computed at time ¢t + At/2 using
Egs. (3-5);

At At QW At
i &) — j— &) —= L
(1 + a 2 > T, a 9 T, Tim + pCAh 9 (3)
A A A
—a J Ti_l(k) + 1 + 2(1 _t Ti(k) —a ”‘é TH-I(IG) = Ti,n
2 2 2
4)
—a(At/2) Ty, ® + [1 + 2a(At/2)1Tx® = Ty (5)
where
a = afAh?
Table 1 Data for two cases
Data Case I Case 11
Thickness 1.25 in. 0.09 in.
No. of laminae 25 15
Cp 0.1 0.4
K 0.1 0.17 X 10™*
p 100 70
he 0.1 0.013323
T 10,000°F 3269°F

Initial temperature 100°F 100°F

TIME (SEC)

Final temperatures are obtained at time ¢ + At:

At dT\D dT\®
Tipr = T + Y I:(F(E) + 2 (;7{)@ +

dT\®@ dT\®
2(%) +(@H ©)

dT\® T,® — T;.,
(E)z h At/2

where

The stability criterion associated with the foregoing scheme
is given by

At < pcAR/Q(Teq — Ti) "
where
— €0 e + he(T — Teg) = 0 ®
Examples

Data for the following two cases are given in Table 1 and re-
sults are given in Table 2.

Case I

In the first case considered, the external conditions were
constant. As predicted for high surface temperatures, the
radiation approximation differed from the explicit method by
less than 19 at the surface. The implicit Runge-Kutta was
slightly better. However, at the insulated surface the largest
deviation recorded for the implicit Runge-Kutta was 0.25%;
for the radiation approximation it was close to 29, (Fig. 1).

Case I1

In the second case, a variable A, and T, were considered
over a period of 325 sec. The maximum heating oceurred at
10 see, coincidentally with the largest deviations in surface
temperature produced by the three methods. The radiation

Table 2 Results of three methods

Method Explicit Implicit Implicit R-K
Case 1
At 0.28 0.5 1.0
U.S.max 5379.1510 5379.2132 5739.0405
Time 100 100 100
LS max 1797.6192 1829.0741 1792.9188
Time 100 100 100
Case II
At 0.18 0.5 1.0
U.S.max 1617.1977 1597.9562 1626.9853
Time 10 11 10
I.S.max 641.8910 615.3460 642.9657
Time 250 250 250
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approximation showed an error of 7.5%,. The implicit
Runge-Kutta deviated by only 0.5%, from the explicit method
(Fig. 2).
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Conclusion

The proposed method has been shown to be as accurate as
the explicit Runge-Kutta. Unlike in the Runge-Kutta, the
time increment is not dependent on the fineness of the mesh.
In the example given, the implicit method was shown to
execute four times faster than the explicit method with no
significant difference in accuracy.

The implicit method combined with a Runge-Kutta inte-
gration on the surface conditions also has been shown to be
significantly more accurate then the straight backward dif-
ference. In the example given there was no significant in-
crease in execution time for the new method when using an
equivalent compute interval.

The proposed method can be extended easily to composite
materials and a variable mesh size. Also, the same method
can be applied to the case with two exterior radiating surfaces.
It should be possible to extend the method to two- and three-
space dimensions by using a modification of the Douglas-
Rachford method similar to that proposed by P.L.T. Brian.?

References

! Gaumer, G. R., “Stability of Three Finite Difference Methods
of Solving Transient Temperatures,”” ARS Journal, Vol. 32, No.
10, Oct. 1962, pp. 1595-1597.

2 Richtmeyer, R. D. and Morton, K. W., Difference Methods for
Initial Valve Problems, 2nd ed., Interscience, New York, 1967, p.
189.

3 Brian, P. L. T., “A Finite Difference Method of Higher-
Order Accuracy for the Solution of Three-Dimensional Heat Con-
duction Problems,”” A.I.Ch.E. Journal, Vol. 7, No. 3, Sept. 1961,
pp. 367-370.

Some Plane Quadrilateral «Hybrid”
Finite Elements
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Introduction

N this Note the “hybrid’”” element of Pian! is generalized to

arbitrary quadrilateral form. Four hybrids having con-

stant and linear stress distributions are considered. An ex-
ample problem is solved in order to compare the elements.
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Table 1 Matrix T for hybrids H1-H4

T H1 H2 H3 Ha T H1 H2 H3 H4
Th,; a a a a T1i44 0 0 0 (1}
Ta,; 0 c 0 € T4 b 0 b —e¢
Ta; b 0 b ¢ T5i44 a b a 0
T4,i .. (1} e 0 Ta;ii4 d —c b
Tsi oo b —d 0 Ts,0 44 L. a —e d
TG,:' e e —d TG,i+4 PPN . e —e
Tq.; . .. b T7.5+4 a

Hybrid elements considered are called H1, H2, H3, and H4.
The notation of Pian® is used where possible. Thus é = P§,
and the P matrices of the four hybrids are

1 0 0 1 Y 0 0 0
H1l =10 1 0LH2 =10 0 1 z 0
0 0 1 0 0 0 0 1

1 0 0 z 0
H3 = l:O 1 0 0 Y
0 0 1 -y -
1 x Y 0 0 0 0
H4 = |:O 0 0 1 z Y 0
0 -y 0 0 0 — 1

Formulation of Matrices

Consider an arbitrary quadrilateral of constant thickness ¢
whose corners are numbered counterclockwise 1-4. Matrix
T accounts for work done by boundary forces. Itsform isde-
termined by consideration of stress and displacement com-
ponents in coordinate directions ns, where s coincides with
the edge being treated, and the normal n makes a counter-
clockwise angle 8 with respect to the = axis (plate elements
have been similarly treated; see, e.g., Ref. 2). The analysis is
as follows. First, express ns nodal displacements, four for
each edge, in terms of nodal displacements in zy coordinates,

qQ =W g Wi = f1(6) ey
16X1 16X8 8X1
Next, require that ns displacements along each edge be linear
functions of s,
ul — Ll qI

) L' = fu(s, 1) @
8x1 8X16 16X1

where [ is the length of an edge. Next, express ns edge stresses
in terms of 3,

S=Z ¢ =ZPg,

Zi; = f3() 3)
8X1 8X3 3x1

In P, for example, along edge 1-2 we have x = 2, — ssinf;; =
@1 — s{@ — x2)/le. Finally, matrix T results from integra-~
tion of (ZP)TL'W = RTZL along the edges. Let

tyr — 9:)/2, 0 = t(s — x1)/2

= tyly; -+ yr) — vily: + ¥5)1/6 (4)
txila: + ;) — oz + 24)1/6

tHys(xw — x'i) + zi(ye — y) + 2@ — 2:)]/6

where 1, 7, k are cyclically permuted from 1-4 and ¢ = 7 — 1,

o QO R
i

Table 2 Times in milliseconds on CDC 3600 computer to
form stiffness matrix and to compute and print stresses.
Trace of stiffness matrix for square element with modulus

E = 1.0 and Poisson’s ratior = }

Property H1 H2 H3 H4 Il 4 T4

Formation 17 60 60 02 16 50 110
Stresses 28¢ 185 185 214 142 142 ..
Trace 3.00 3.67 3.18 3.75 3.00 4.00 4.13

¢ Stresses at one point only.



