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Fig. 3 Measured and transformed Doppler shifts.

the axial velocity of the plasma jet were measured at Sees.
IV and V (Fig. 2) in a manner similar to the one mentioned
previously. The two interferograms, however, were taken
upstream and downstream, respectively, at an angle of 60°
against the axis of the plasma jet, thus experimentally elimi-
nating the rotational parts of the line shifts as a first-order
approximation. Profiles of relative intensities which were
additionally required, as will be shown below, were measured
at each section in question by removing the interferometer
from the light path. Since spectral lines of neutral argon have
not been observed, the Doppler shifts were obtained from
lines of singly ionized argon, especially from the line at 4348 A.
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Fig. 4 Axial velocity profiles at Sees. IV and V.
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Fig. 6 Angular frequency of the jet vs radius at Sees. I,
II, and III.

Results
Figures 4-6 show the profiles of axial and rotational

velocity and the angular frequency, Fig. 6 illustrating the non-
rigid-body rotation of the jet. A detailed description of ex-
perimental methods and transformation formulas may be
found in previously published papers.6-7
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Transformation
The transformation of the measured gross Doppler shift

profiles to local quantities has been accomplished by using the
intensity profiles and profiles of emission coefficients com-
puted from these via an Abel transform as weights in a modi-
fied Abel transform for rotational and elliptical cases. Figure
3 shows profiles of integrated Doppler shifts, emission coef-
ficients, and transformed local Doppler shifts; the utility of
the transform is evident, especially if the profiles of the emis-
sion coefficient flatten in the region near the axis. If the
geometry of the jet deviates considerably from cylinder sym-
metry, the accuracy of the results of the transform decreases
with increasing radius.
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Fig. 5 Rotational velocity profiles at Sees. I, II, and III.
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a = Stefan-Boltzman constant
hc = heat transfer coefficient
I.S. = insulated surface
U.S. = uninsulated surface

1,900

Subscripts
= space locations
= convective medium
= time sequence
= wall
= equilibrium

I
m
n
w
eq

Superscript
k = Runge-Kutta step

Introduction

TRADITIONALLY, the problem of transient heat conduc-
tion with a radiating surface has been solved in one of two

ways: 1) an explicit Runge-Kutta integration, 2) a fully
implicit difference method. The fully implicit method is un-
conditionally stable. However, radiation and convection are
assumed to originate from the surface node, and an approxima-
tion to the radiation term is necessary to linearize the resulting
difference equation.1 The error due to this approximation
can be kept to within 10% for temperatures greater than
5000°F.

A very accurate solution is possible with the explicit Runge-
Kutta technique combined with an actual wall temperature
computation, but the stability criterion associated with the
explicit form of the difference equation may make this tech-
nique prohibitively expensive for fine meshes.2

Discussion

In the proposed method an implicit difference, which is un-
conditionally stable, is used between all interior points, and
an explicit difference is used between the wall and adjacent
node. In order to achieve reasonable accuracy in cases with
a rapidly changing surface heat flux, a Runge-Kutta-type
integration is imposed on the surface. A description follows.

The surface heat flux is computed by using Eqs. (1) and (2)
with conditions at time tn in Runge-Kutta step 1, at time

steps 2 and 3, and at time tn+i in step 4;

hc(Tm - Tw) + [K/(M/2)](!Ti - Tw) = 0 (1)

Q = -eo-TV + hc(Tm - Tw) (2)

Interior temperatures are computed at time t + A£/2 using
Eqs. (3-5);

AZ
0 TT

(4)
== TN.n (5)

where

a = a/ A/i2

Table 1 Data for two cases

Data

Thickness
No. of laminae
CP
K
p
hc
Tm

Initial temperature

Case I

1.25 in.
25
0.1
0.1
100
0.1
10,000°F
100°F

Case II

0.09 in.
15
0.4
0.17 X 10~4

70
0.013323
3269 °F
100°F

Fig. 1 Tempera-
ture history of insu-

lated surface.

I 1,700

95
TIME (SEC)

Final temperatures are obtained at time t + At:

Mr/dT\» (dT
^ = Tt" + +

where

/dT\<*> = Ti_
\dt)i At/2

The stability criterion associated with the foregoing scheme
is given by

A* <

where
(7)

(8)V + he(Tn - Teq) = 0

Examples

Data for the following two cases are given in Table 1 and re-
sults are given in Table 2.

Case I

In the first case considered, the external conditions were
constant. As predicted for high surface temperatures, the
radiation approximation differed from the explicit method by
less than 1% at the surface. The implicit Runge-Kutta was
slightly better. However, at the insulated surface the largest
deviation recorded for the implicit Runge-Kutta was 0.25%;
for the radiation approximation it was close to 2% (Fig. 1).

Case II
In the second case, a variable hc and Tm were considered

over a period of 325 sec. The maximum heating occurred at
10 sec, coincidentally with the largest deviations in surface
temperature produced by the three methods. The radiation

Table 2 Results of three methods

Method

A£
U.S.max
Time
LS.max
Time

At
U.S.max
Time
LS.max
Time

Explicit

0.28
5379.1510

100
1797.6192

100

0.18
1617.1977

10
641.8910
250

Implicit

Case I
0.5

5379.2132
100

1829.0741
100

Case II
0.5

1597.9562
11

615.3460
250

Implicit R-K

1.0
5739.0405

100
1792.9188

100

1.0
1626.9853

10
642.9657
250
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Table 1 Matrix T for hybrids H1-H4

Fig. 2 Tempera-
ture history of un-
insulated surface.

1,200

approximation showed an error of 7.5%. The implicit
Runge-Kutta deviated by only 0.5% from the explicit method
(Fig. 2).

Conclusion

The proposed method has been shown to be as accurate as
the explicit Runge-Kutta. Unlike in the Runge-Kutta, the
time increment is not dependent on the fineness of the mesh.
In the example given, the implicit method was shown to
execute four times faster than the explicit method with no
significant difference in accuracy.

The implicit method combined with a Runge-Kutta inte-
gration on the surface conditions also has been shown to be
significantly more accurate then the straight backward dif-
ference. In the example given there was no significant in-
crease in execution time for the new method when using an
equivalent compute interval.

The proposed method can be extended easily to composite
materials and a variable mesh size. Also, the same method
can be applied to the case with two exterior radiating surfaces.
It should be possible to extend the method to two- and three-
space dimensions by using a modification of the Douglas-
Rachford method similar to that proposed by P.L.T. Brian.3
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Hybrid elements considered are called HI, H2, H3, and #4.
The notation of Pian1 is used where possible. Thus d = P(3,
and the P matrices of the four hybrids are

HI =

#4 =

"i o on no i 0 , 7 / 2 = 0
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Formulation of Matrices

Consider an arbitrary quadrilateral of constant thickness t
whose corners are numbered counterclockwise 1-4. Matrix
T accounts for work done by boundary forces. Its form is de-
termined by consideration of stress and displacement com-
ponents in coordinate directions ns, where s coincides with
the edge being treated, and the normal n makes a counter-
clockwise angle 6 with respect to the x axis (plate elements
have been similarly treated; see, e.g., Ref. 2). The analysis is
as follows. First, express ns nodal displacements, four for
each edge, in terms of nodal displacements in xy coordinates,

q' = W q,
16X1 16X8 8X1

Next, require that ns displacements along each edge be linear
functions of s,

u' = L' q',
8X1 8X16 16X1

Lti' = Ms, I) (2)

where I is the length of an edge. Next, express ns edge stresses
in terms of (3,

S = Z d = ZP(3,
8X1 8X3 3X1

MB) (3)

In P, for example, along edge 1-2 we have x = Xi — s sin 812 =
Xi — s(xi — Xz)/li2- Finally, matrix T results from integra-
tion of (ZP)rL'W = RTL along the edges. Let

a = t(yk - yd/2, b = t(xi - xk)/2
c = t[yk(yj + 2/fc) - yi(yi +
d = t[xi(xi + Xj) — xk(xj +
e = t\yj(xk - x^ + Xj(yk - yi) + 2(xkyk -

(4)

where i, j, k are cyclically permuted from 1-4 and i = j — 1,

Introduction

IN this Note the "hybrid"- element of Pian1 is generalized to
arbitrary quadrilateral form. Four hybrids having con-

stant and linear stress distributions are considered. An ex-
ample problem is solved in order to compare the elements.
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Table 2 Times in milliseconds on CDC 3600 computer to
form stiffness matrix and to compute and print stresses.
Trace of stiffness matrix for square element with modulus

E = 1.0 and Poisson's ratio v = J

Property HI H2 #3 #4 II 74

1 Stresses at one point only.

!T4

Formation
Stresses
Trace

17
28"
3.00

60
185
3.67

60
185
3.18

92
214
3.75

16
142
3.00

50
142
4.00

110

4.13


